epropelled°

DATASHEET

Intelligent Air Motor Controller iAMC1200

Key Features

Designed to be lightweight with outstanding power density

Built for industrial-strength, longevity, and safety

100% tested with individual performance reports

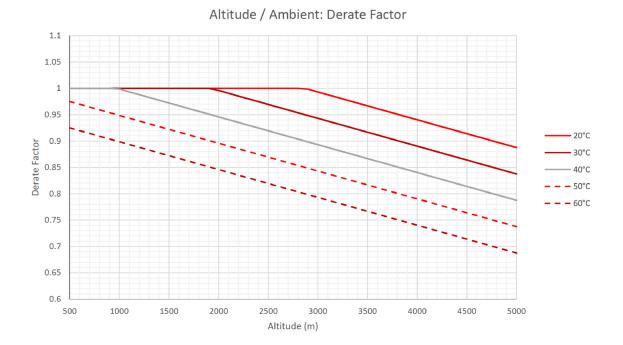
Fly Higher. Fly Longer. Fly Smarter.

Unmanned aerial vehicle (UAV) electronics continue to evolve as mission profiles become more demanding. System power designers are being challenged to provide more innovative power supply systems to improve efficiency, ensure reliability, reduce weight, minimize heat dissipation, and lower overall cost. New levels of energy and system-level efficiencies are also required to meet tomorrow's aviation needs.

ePropelled intelligent air motor controllers (iAMC), or electronic speed controllers (ESC), are built to work alongside our lightweight propulsion motors. Together, they create a high-performance, high-efficiency propulsion system for your aircraft. Our iAMCs transform DC input voltage into a 3-phase AC output voltage and act as the brain of the electric motor. iAMCs can also sense minute changes in the motor's direction, acceleration, and other parameters and will automatically adapt to it for optimized stability and precision control.

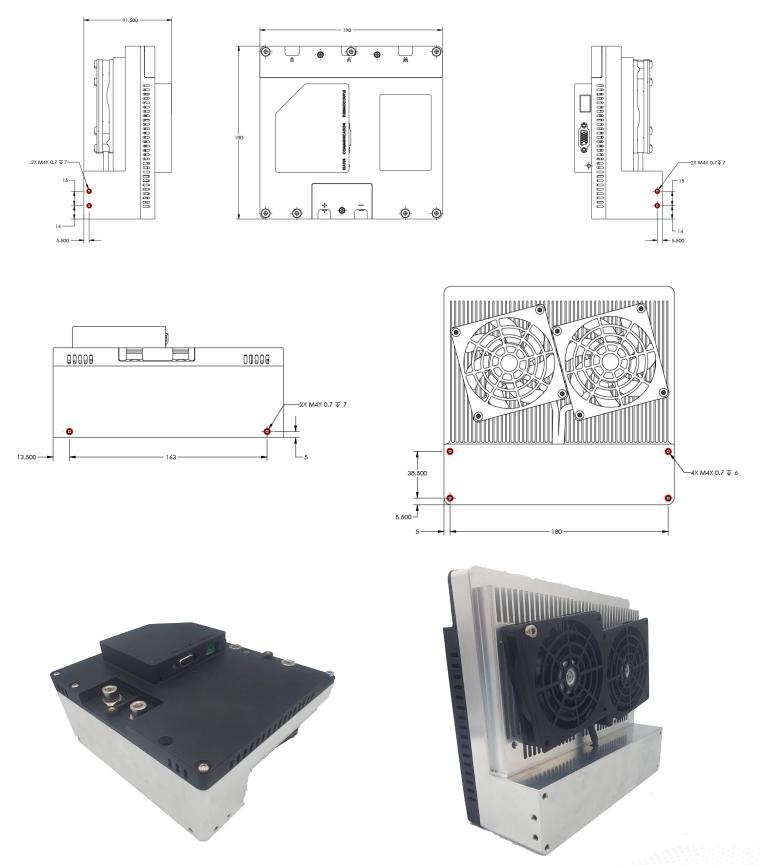
iAMC1200 SPECIFICATIONS

Parameter	Values/Details		
Input voltage range	48 V - 100 V		
Input battery configuration	(12S Lixx ⁰) - (24S Lixx ⁰)		
Antispark protection	Yes		
Motor compatibility	Brushless, sensorless		
Output phase current (30 s)	350 Apk [248 Arms]		
Output phase current (180 s)	300 Apk [212 Arms]		
Output phase current (continuous)	175 Apk [124 Arms]		
Peak input power (30 s)	15,000 W [min 84 Vbc]		
Peak input power (180 s)	12,000 W [min 84 Vbc]		
Continuous input power	6,000 W		
Efficiency	Up to 98%		
Inverter switching frequency	50 kHz		
Advance angle control	0°, 10°, 20°, 30°, 40°		
Maximum electrical frequency	2.67 kHz		
Ambient temperature range	0°C to 40°C (32°F to 104°F)		
Maximum internal inverter temperature	100°C (212°F)		
Motor temperature measurement	Yes		
Motor temperature protection	Yes		
Power connection	2 X M8 screw terminal		
Motor lead	3 X M8 screw terminal		
Communication	CAN 2.0 A		
Speed commands	PWM or CAN command via eP Connect		
Real-time data monitoring (RTDM)	Yes (10 data points with speed, current, and temperatures)		
IP rating	IP20		
Cooling airflow for operation without fan	5 m/s		
CAN connector	DB15-HD		
Speed command connector	DB15-HD		
Weight	1,950 g		
Dimensions (L x W x H)	180 mm x 190 mm x 91.5 mm		
Configurable parameters	24 parameters covering system, motor, inverter, PWM input & alert thresholds		
Alerts via CAN bus	Alerts covering 18 conditions		
Multiple iAMCs can be used on the same CAN bus	Up to 15 devices		


Notes

- Lixx⁰ = LiFePo4 or LiPo
- Errors and omissions excepted

Derating with Increased Altitude


The derating factor for altitude is based on the loss of dielectric strength of the air as the density decrease with the altitude. The diagram below shows how the cooling efficiency changes with high altitude and ambient temperatures.

epropelled°

INTELLIGENT AIR MOTOR CONTROLLER iAMC1200 DIMENSIONS

Dimensions given in mm. Mounting holes are marked in red.

iAMC1200 PINOUT			
Connector Type	Pin Name	Pin Description	
Power (M8 screw terminals)	U	U phase input connection for PM	
	V	V phase input connection for PM	
	W	W phase input connection for PM	
	+	Positive input connection DC supply/battery	
	-	Negative input connection DC supply/battery	

iAMC1200 PINOUT		
DB15 Pin	Pin Name	
1	Not used. Do not connect	
2	Not used. Do not connect	
3	Not used. Do not connect	
4	GND	
5	CANH	
6	Not used. Do not connect	
7	Not used. Do not connect	
8	Not used. Do not connect	
9	Not used. Do not connect	
10	CANL	
11	TMS	
12	ТСК	
13	Not used. Do not connect	
14	Not used. Do not connect	
15	PPM/PWM Input	
Chas	GND	

iAMC1200 K-TYPE THERMOCOUPLE INPUT		
TC	Pin Name	
+	Positive TC input	
-	Negative TC input	

Assembled in USA

Errors and omissions excepted. All specifications subject to change without notice. For more information, including ordering product, please contact us at **info@ePropelled.com**.

Copyright © ePropelled Inc. 2022. All rights reserved.

This document is copyrighted and all rights are reserved.

Disclosure of this document to third parties in whole or in part or use of the information herein for purposes other than those described herein is not permitted, except with the prior written consent of the copyright holder.

The copyright holder makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of fitness for any particular purpose. The information in this document is subject to change without notice. The copyright holder assumes no responsibility for any errors that may appear in this document.

ePropelled, SwimDrive, Hybrid Ready, The Future of Electric Propulsion, eDTS, and Dynamic Torque Switching are trademarks of ePropelled.

Warnings and Labels

*e*PROPELLED®

ePropelled © 2022. ePropelled designs intelligent motors, motor controllers, and power management systems that help reduce energy consumption and dramatically improve system efficiency at a lower cost. Our patented technology and innovative smart systems are equally at home in the air, on the road, and in water, leading the way towards a greener future.

ePropelled has offices in the United States, Europe, and India and works with manufacturers of various types and sizes around the world. For more information, visit **epropelled.com**